VOLUME

An Introduction to Cavalieri's Principle

Suppose we have candy bars of

 equal length and cut them into equal numbers of slices as if they were loaves of bread...

Suppose we have candy bars of

 equal length and cut them into equal numbers of slices as if they were loaves of bread..If every pair of corresponding slices has the same area...

Suppose we have candy bars of

 equal length and cut them into equal numbers of slices as if they were loaves of bread..If every pair of corresponding slices has the same area...

Discuss with Your Group

 Be Prepared to Share!

If the corresponding crosssections have equal areas...

If the corresponding crosssections have equal areas...

The Volume of ANY Prism...

 Right

The Volume of ANY Prism...

Right

The Volume of ANY Prism...

Oblique

The Volume of ANY Prism...

 is the (area of the base) x (height)

Oblique

The Volume of any CYLINDER is...

$$
V=\text { (area of the base) } X \text { height }
$$

$\mathrm{V}=\pi^{*} \mathrm{r}^{2 *} \mathrm{~h}$

Right cylinder

Oblique cylinder

If the corresponding crosssections have equal areas...

The Volume of ANY Pyramid or Cone...

The Volume of ANY Pyramid or

 Cone...

The Volume of ANY Pyramid or Cone...

$V=1 / 3^{*}$ (area of the base)*height

Taking it Further...

The Volume of any SPHERE is...

$$
V=\frac{4}{3} * \pi * r^{3}
$$

