Lesson 2.5•Angle Relationships

Name \qquad Period \qquad Date \qquad

For Exercises 1-6, find each lettered angle measure without using a protractor.
1.

2.

3.

4.

5.

6.

For Exercises $7-10$, tell whether each statement is always (A), sometimes (S), or never (N) true.
7. \qquad The sum of the measures of two acute angles equals the measure of an obtuse angle.
8. \qquad If $\angle X A Y$ and $\angle P A Q$ are vertical angles, then either X, A, and P or X, A, and Q are collinear.
9. \qquad If two angles form a linear pair, then they are complementary.
10. \qquad If a statement is true, then its converse is true.

For Exercises 11-15, fill in each blank to make a true statement.
11. If one angle of a linear pair is obtuse, then the other is \qquad .
12. If $\angle A \cong \angle B$ and the supplement of $\angle B$ has measure 22°, then $m \angle A=$ \qquad .
13. If $\angle P$ is a right angle and $\angle P$ and $\angle Q$ form a linear pair, then $m \angle Q$ is \qquad .
14. If $\angle S$ and $\angle T$ are complementary and $\angle T$ and $\angle U$ are supplementary, then $\angle U$ is a(n) \qquad angle.
15. Switching the "if" and "then" parts of a statement changes the statement to its \qquad .

Lesson 2.6 • Special Angles on Parallel Lines

Name \qquad Period \qquad Date \qquad

For Exercises 1-3, use your conjectures to find each angle measure.
1.

2.

3.

For Exercises 4-6, use your conjectures to determine whether $\ell_{1} \| \ell_{2}$, and explain why. If not enough information is given, write "cannot be determined."
4.

5.

6.

7. Find each angle measure.

8. Find x.

9. Find x and y.

