Geometry HW 8/25, due 8/26

Compositions of Transformations

* You will need graph paper! If you don't have any, do your best to create a coordinate system on lined or blank paper **Notice that no figures are given to you, so it will be helpful for you to start these problems by drawing the information you're given on a coordinate system.

- **2.** Given Δ*ABC* with vertices: *A*(−6, −1), *B*(−4, −3), *C*(−3, 0).
 - a) Reflect $\triangle ABC$ across the *x*-axis to create $\triangle A'B'C'$.
 - b) What are the coordinates of the vertices of $\Delta A'B'C'$?
 - c) What is the transformation rule, $(x, y) \rightarrow (?, ?)$, that transforms $\triangle ABC$ to $\triangle A'B'C'$?
 - d) Reflect $\Delta A'B'C'$ across the line x = -2 to create the image $\Delta A''B''C''$.
 - e) What are the coordinates of the vertices of $\Delta A''B''C''$?
 - f) What is the single transformation rule that takes $\triangle ABC$ onto $\triangle A''B''C''$? (Remember you are relating the original coordinates to the final coordinates)

Hint: For part f) you should try a trick similar to the second example we did in class today. Switch the signs of all the x-coordinates and then see if you can relate them to the final x-coordinates

- **5.** Given $\triangle ABC$ with vertices: A(-8, 2), B(-4, -2), C(-3, 3).
 - a) Reflect $\triangle ABC$ across the *y*-axis to create $\triangle A'B'C'$.
 - b) What are the coordinates of the vertices of $\Delta A'B'C'$?
 - c) What is the transformation rule, $(x, y) \rightarrow (?, ?)$, that transforms $\triangle ABC$ to $\triangle A'B'C'$?
 - d) Rotate $\Delta A'B'C'$ 90° clockwise about the origin to create $\Delta A''B''C''$.
 - e) What are the coordinates of the vertices of $\Delta A''B''C''$?
 - f) What is the transformation rule, $(x, y) \rightarrow (?, ?)$, that transforms $\Delta A'B'C'$ to $\Delta A''B''C''?$
 - g) What is the single transformation rule that takes $\triangle ABC$ onto $\triangle A''B''C''$?