Geometry HW 8/24 Practice With Transformations and Ordered Pair Rules

For #1, translate the quadrilateral by the given vector.

1. <-4, 3>

For #4 and #6, reflect the each quadrilateral by the given ordered pair rule. Identify the line of reflection.

6. $(x, y) \to (y, x)$

For #8, transform the quadrilateral by the given ordered pair rule. Describe what type of transformation it is. Identify either a line of reflection or a center of rotation.

8. $(x, y) \rightarrow (-y, x)$

For #12, transform the quadrilateral by the given ordered pair rule. Explain how this transformation is different than previous ones we've seen.

12. $(x, y) \rightarrow (3x, 3y)$

For #20, describe the type of transformation. Then find the ordered pair rule that transformed the blue/green triangle ΔPQR to the blue/green triangle $\Delta P'Q'R'$.

20.
$$(x, y) \rightarrow (?, ?)$$

#25.

Given $\triangle ABC$ with vertices: A(2, -2), B(7, -4), C(5, 1). Transform $\triangle ABC$ by the ordered pair rule $(x, y) \rightarrow (-x, y)$ to create $\triangle A'B'C'$. What are the coordinates of the vertices of $\triangle A'B'C'$? What type of transformation is that? What is the ordered pair rule that transforms $\triangle A'B'C'$ to $\triangle ABC$?

Hint: You can find the ordered pair rule by writing the coordinates for the original triangle and the transformed triangle, then comparing them to see how they changed