Here is another example of a composition of rotation and reflection transformations.

EXAMPLE C

Given ΔDEF with vertices: D(-4, 2), E(-1, 0), F(0, 6). Reflect ΔDEF across the line y = x to create $\Delta D'E'F'$. Rotate ΔDEF 90° clockwise about the origin to create $\Delta D''E''F''$. Reflect D''E''F'' across the *x*-axis to create $\Delta D'''E'''F'''$.

- a) What is the transformation rule, $(x, y) \rightarrow (?, ?)$, that transforms ΔDEF to $\Delta D'E'F'$?
- **b**) What are the coordinates of the vertices of $\Delta D' E' F'$?
- c) What are the coordinates of the vertices of ΔD" E" F"?
- d) What is the transformation rule, $(x, y) \rightarrow (?, ?)$, that transforms ΔDEF to $\Delta D'' E'' F''$?
- e) What are the coordinates of the vertices of ΔD^{'''} E^{'''} F^{'''}?
- f) What is the single transformation rule that takes $\Delta D'' E'' F''$ onto $\Delta D''' E''' F''?$
- g) What is the single transformation rule that takes ΔDEF onto $\Delta D''' E''' F''$?

Solution

Step 1 Draw ΔDEF on a set of axes and relocate its vertices by reflecting ΔDEF across the line y = x to get $\Delta D'E'F'$. Earlier you discovered that a reflection across the line y = x switches the *x*- and *y*-values of each ordered pair thus it is equivalent to the ordered pair rule $(x, y) \rightarrow (y, x)$. Therefore D(-4, 2), E(-1, 0), F(0, 6) become D'(2, -4), E'(0, -1), F'(6, 0).

Step 2 Earlier you discovered that a rotation of 90° clockwise is equivalent to the ordered pair rule $(x, y) \rightarrow (y, -x)$. Relocating the vertices of ΔDEF using the ordered pair rule gives us vertices D''(2, 4), E''(0, 1) and F''(6, 0).

Step 3 Earlier you discovered that a reflection across the *x*- axis is equivalent to the ordered pair rule $(x, y) \rightarrow (x, -y)$. Relocating the vertices of $\Delta D'' E'' F''$ using the ordered pair rule gives us vertices D'''(2, 4), E'''(0, 1), and F'''(6, 0).

Step 4 The ordered pair rule that takes ΔDEF onto $\Delta D''E''F''$ is $(x, y) \rightarrow (y, -x)$. The ordered pair rule that takes $\Delta D''E''F''$ onto $\Delta D'''E'''F'''$ is $(x, y) \rightarrow (x, -y)$. Thus the ordered pair rule that takes ΔDEF onto $\Delta D'''E'''F'''$ is $(x, y) \rightarrow (y, -x) \rightarrow (y, x)$, or simply $(x, y) \rightarrow (y, x)$. Notice, this is the same as the ordered pair rule $(x, y) \rightarrow (y, x)$ that reflected ΔDEF onto $\Delta D''E'F'$. $(x, y) \rightarrow (x, -y)$

Conclusion:

The composition of a 90° CW(clockwise) rotation and a reflection across the x-axis is the same as a single reflection across the line y=x.