Here is another example of a composition of rotation and reflection transformations.

EXAMPLE C

Given $\triangle D E F$ with vertices: $D(-4,2), E(-1,0), F(0,6)$. Reflect $\triangle D E F$ across the line $y=x$ to create $\Delta D^{\prime} E^{\prime} F^{\prime}$. Rotate $\triangle D E F 90^{\circ}$ clockwise about the origin to create $\Delta D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$. Reflect $D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$ across the x-axis to create $\Delta D^{\prime \prime \prime} E^{\prime \prime \prime} F^{\prime \prime \prime}$.
a) What is the transformation rule, $(x, y) \rightarrow(?$, ?), that transforms $\triangle D E F$ to $\triangle D^{\prime} E^{\prime} F^{\prime}$?
b) What are the coordinates of the vertices of $\Delta D^{\prime} E^{\prime} F^{\prime}$?
c) What are the coordinates of the vertices of $\Delta D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$?
d) What is the transformation rule, $(x, y) \rightarrow(?, ?)$, that transforms $\triangle D E F$ to $\Delta D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$?
e) What are the coordinates of the vertices of
 $\Delta D^{\prime \prime \prime} E^{\prime \prime \prime} F^{\prime \prime \prime}$?
f) What is the single transformation rule that takes $\Delta D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$ onto $\Delta D^{\prime \prime \prime} E^{\prime \prime \prime} F^{\prime \prime}$?
g) What is the single transformation rule that takes $\triangle D E F$ onto $\Delta D^{\prime \prime \prime} E^{\prime \prime \prime} F^{\prime \prime}$?

Solution

Step 1 Draw $\triangle D E F$ on a set of axes and relocate its vertices by reflecting $\triangle D E F$ across the line $y=x$ to get $\Delta D^{\prime} E^{\prime} F^{\prime}$. Earlier you discovered that a reflection across the line $y=x$ switches the x - and y-values of each ordered pair thus it is equivalent to the ordered pair rule $(x, y) \rightarrow(y, x)$. Therefore $D(-4,2), E(-1$, 0), $F(0,6)$ become $D^{\prime}(2,-4), E^{\prime}(0,-1), F^{\prime}(6,0)$.

Step 2 Earlier you discovered that a rotation of 90° clockwise is equivalent to the ordered pair rule $(x, y) \rightarrow(y,-x)$. Relocating the vertices of $\triangle D E F$ using the ordered pair rule gives us vertices $D^{\prime \prime}(2,4), E^{\prime \prime}(0,1)$ and $F^{\prime \prime}(6,0)$.

Step 3 Earlier you discovered that a reflection across the x - axis is equivalent to the ordered pair rule $(x, y) \rightarrow(x,-y)$. Relocating the vertices of $\Delta D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$ using the ordered pair rule gives us vertices $D^{\prime \prime \prime}(2,4), E^{\prime \prime \prime}(0,1)$, and $F^{\prime \prime \prime}(6,0)$.

Step 4 The ordered pair rule that takes $\triangle D E F$ onto $\Delta D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$ is $(x, y) \rightarrow(y,-x)$. The ordered pair rule that takes $\Delta D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$ onto $\Delta D^{\prime \prime \prime} E^{\prime \prime \prime} F^{\prime \prime \prime} \prime$ is $(x, y) \rightarrow(x,-y)$. Thus the ordered pair rule that takes $\triangle D E F$ onto $\Delta D^{\prime \prime \prime} E^{\prime \prime \prime} F^{\prime \prime \prime}$ is $(x, y) \rightarrow(y,-x) \rightarrow(y, x)$, or simply $(x, y) \rightarrow(y, x)$. Notice, this is the same as the ordered pair rule $(x, y) \rightarrow(y, x)$ that reflected $\triangle D E F$ onto $\Delta D^{\prime} E^{\prime} F^{\prime}$. $(x, y) \rightarrow(x,-y)$

Conclusion:

The composition of a $90^{\circ} \mathrm{CW}$ (clockwise) rotation and a reflection across the x -axis is the same as a single reflection across the line $y=x$.

